3.2.73 \(\int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [C] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [B] (verified)
3.2.73.5 Fricas [C] (verification not implemented)
3.2.73.6 Sympy [F(-1)]
3.2.73.7 Maxima [F]
3.2.73.8 Giac [F]
3.2.73.9 Mupad [F(-1)]

3.2.73.1 Optimal result

Integrand size = 23, antiderivative size = 161 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=-\frac {16 a^2 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {16 a^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {4 a^2 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

output
4/3*a^2*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a^2*sec(d*x+c)^(5/2)*sin(d*x+c)/ 
d+16/5*a^2*sin(d*x+c)*sec(d*x+c)^(1/2)/d-16/5*a^2*(cos(1/2*d*x+1/2*c)^2)^( 
1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^( 
1/2)*sec(d*x+c)^(1/2)/d+4/3*a^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1 
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1 
/2)/d
 
3.2.73.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.06 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.67 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\frac {a^2 \sec ^4\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^2 \left (-\frac {2 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \cos ^2(c+d x) \left (12 \left (1+e^{2 i (c+d x)}\right )+12 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\frac {24 \cos (d x) \csc (c)+(10+3 \sec (c+d x)) \tan (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}\right )}{30 d} \]

input
Integrate[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2,x]
 
output
(a^2*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(((-2*I)*Sqrt[2]*Sqrt[E^(I*(c 
 + d*x))/(1 + E^((2*I)*(c + d*x)))]*Cos[c + d*x]^2*(12*(1 + E^((2*I)*(c + 
d*x))) + 12*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometri 
c2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2 
*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^ 
((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + (24*Cos[d*x]*C 
sc[c] + (10 + 3*Sec[c + d*x])*Tan[c + d*x])/Sec[c + d*x]^(3/2)))/(30*d)
 
3.2.73.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.99, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 4275, 3042, 4255, 3042, 4258, 3042, 3120, 4534, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 4275

\(\displaystyle 2 a^2 \int \sec ^{\frac {5}{2}}(c+d x)dx+\int \sec ^{\frac {3}{2}}(c+d x) \left (\sec ^2(c+d x) a^2+a^2\right )dx\)

\(\Big \downarrow \) 3042

\(\displaystyle 2 a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}dx+\int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2\right )dx+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {8}{5} a^2 \int \sec ^{\frac {3}{2}}(c+d x)dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{5} a^2 \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {8}{5} a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{5} a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {8}{5} a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {8}{5} a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 a^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d}+2 a^2 \left (\frac {2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+\frac {8}{5} a^2 \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\)

input
Int[Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2,x]
 
output
(2*a^2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(5*d) + (8*a^2*((-2*Sqrt[Cos[c + d 
*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*Sqrt[Sec[c + d*x 
]]*Sin[c + d*x])/d))/5 + 2*a^2*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/ 
2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d 
))
 

3.2.73.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 
3.2.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(189)=378\).

Time = 26.28 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.40

method result size
default \(-\frac {a^{2} \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{3 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {68 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {32 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {16 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{10 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{3}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(386\)
parts \(\text {Expression too large to display}\) \(761\)

input
int(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
-a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/3*cos(1 
/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/ 
2*d*x+1/2*c)^2-1/2)^2+68/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1 
/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli 
pticF(cos(1/2*d*x+1/2*c),2^(1/2))-32/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/ 
2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-16/5*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)) 
-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/10*cos(1/2*d*x+1/2*c)*(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3)/s 
in(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.73.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.25 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 12 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 i \, \sqrt {2} a^{2} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (24 \, a^{2} \cos \left (d x + c\right )^{2} + 10 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 
output
-2/15*(5*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + 
 c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 12*I*sqrt(2)*a^2*cos(d*x + c)^2*w 
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c))) - 12*I*sqrt(2)*a^2*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (24*a^2*cos(d*x + c)^2 
+ 10*a^2*cos(d*x + c) + 3*a^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x 
 + c)^2)
 
3.2.73.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(3/2)*(a+a*sec(d*x+c))**2,x)
 
output
Timed out
 
3.2.73.7 Maxima [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)
 
3.2.73.8 Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2), x)
 
3.2.73.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \, dx=\int {\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2),x)
 
output
int((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2), x)